107年第1學期-6192 隨機過程 課程資訊

課程分享

選課分析

本課程名額為 70人,已有6人選讀,尚餘名額64人。

評分方式

評分項目 配分比例 說明
Assignments 30 2-3 assignments
Mid-term Exam 30
Project Report 40

授課教師

王榮琮

教育目標

The objective of this course is to introduce basic concepts for stochastic processes. The main focus will be on studying analytical models for systems which change states stochastically with time. The topics include: 1. Markov Chains 1A. Hidden Markov Models 2. Poisson processes 2A. Non-homogeneous Poisson processes 3. Continuous-Time Markov Chain 3A. Queueing Models 4. Renewal Theorem 4A. Apply Renewal Theorem to Reliability 5. Brownian motion and MArtingales 5A. Black-Scholes Models and Related Topics

課程概述

The objective of this course is to introduce basic concepts for stochastic processes. The main focus will be on studying analytical models for systems which change states stochastically with time. This is a course for studying probabilistic models rather than statistical models. Thus, background on probability and mathematical statistics are necessary. We will begin right after �onditional probability�and �onditional expectation� Students will learn concepts and techniques for characterizing models stochastically. This will help students for further study. The topics of this course include basic processes, stochastic models, and diffusion processes. Contents of this course might be adjusted according to time limitation and students�interests. They are: 1.Preliminaries: lack of memory property, transformations, inequalities, limit theorems, notations of stochastic processes 2.Markov chains: Chapman-Kolmogorov equation, classification of chains, long run behavior of Markov chains, branch processes, random walk 3.Poisson processes: Inter-arrival time distributions, conditional waiting time distributions, non-homogeneous Poisson processes 4.Continuous-time Markov chains: birth-death processes, compound Poisson processes, finite-state Markov chains 5.Renewal processes: renewal functions, limit theorems, delayed and stationary renewal processes, queueing 6.Stochastic models: Markov renewal processes, marked processes 7.Martingales: conditional expectations, filtrations, stopping time, martingale CLT 8.Diffusion Processes: Brownian motions, It�s formula, Black-Scholes Model, Girsanov Theorem

課程資訊

參考書目

1. Sheldon M. Ross (2014) Introduction to Probability Models, 11th ed, Academic Press
2. Sheldon M. Ross (1996) Stochastic Processes, 2nd ed, John Wiley , New York.