100年第1學期-4434 人工智慧方法論 課程資訊
評分方式
評分項目 | 配分比例 | 說明 |
---|---|---|
Homework and labs | 20 | |
Midterm | 30 | |
Final project | 30 | |
Attendence and paticipation | 20 |
選課分析
本課程名額為 70人,已有34 人選讀,尚餘名額36人。
登入後可進行最愛課程追蹤 [按此登入]。
授課教師
王偉華教育目標
This course is designed for doctorate and advanced master level students. The purpose of this course is to provide an overview and inside methodologies of the Bayesian Networks. Although the concepts and the applications are going to be the major contents, the basic theoretical results will be covered along the couse if needed. In this course, the students have to read and present materials assigned in the lectures, to work the homework assignments with/without using the software Netica.
課程概述
This course is designed for the Ph.D. or aggresive Master students. The purpose of this course is to help the students to have acquaintance with the theoretical concepts and methodologies in the Statistical Learning Theory (SLT). The ways to expolore the relationships among data attracts many research attentions in these years. SLT is a heavy investigated, both in theory and methodologies, alternative in pursuing the target.
課程資訊
基本資料
選修課,學分數:3-0
上課時間:二/2,3,4[C104]
修課班級:工工碩博
修課年級:年級以上
選課備註:B637
教師與教學助理
授課教師:王偉華
大班TA或教學助理:尚無資料
Office HourFri 8:30-10:30 am
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
1. Koller, D. and N. Friedman, Probabilistic Graphicl Models – Principles and Techniques, The MIT Press, 2009
2. Neapolitan, Richard E., Learning Bayesian Networks, Prentice Hall, 2004
3. Jensen, F.V., Bayesian Networks and Decision Graphs, Springer, 2001
4. Pearl, Judea, Causality: Models, Reasoning, and Inference, Cambridge, 2000
5. Jordan, Michael I, Learning in Graphical Models, MIT Press, 1999
開課紀錄
您可查詢過去本課程開課紀錄。 人工智慧方法論歷史開課紀錄查詢