106年第1學期-6192 類別資料分析 課程資訊
評分方式
評分項目 | 配分比例 | 說明 |
---|---|---|
Homework assignments | 20 | |
Midterm, Quizzes, or Projects | 55 | |
Final | 25 |
選課分析
本課程名額為 70人,已有4 人選讀,尚餘名額66人。
登入後可進行最愛課程追蹤 [按此登入]。
教育目標
Introducing advanced statistical models and theories for categorical data used by statistical researchers and practitioners.1. Introduction: Distributions and Inference for Categorical Data
2. Describing Contingency Tables
3. Inference for Contingency Tables
4. Introduction to Generalized Linear Models
5. Logistic Regression
6. Building,Checking, and Applying Logistic Regression Models
7. Alternative Mideling of Binary Response Data
8. Models for Multinomial Responses
9. Loglinear Models for Contingency Tables
10. Building and Extending Loglinear Models
11. Models for Matched Pairs
12. Cluster Categorical Data: Marginal and Transitional Models
13. Cluster Categorical Data: Random Effect Models
14. Other Mixture Models for Discrete Data
15. Non-Model-Based Classification and Clustering
16. Large- and Small Sample Theory for Multinomial Models
17. Historical Tour of Categorical Data Analysis.
In this semester, we may include some topics related to Data Mining such as Decision Trees, Bagging, Random Forests, and/or Boosting.
課程概述
Objective: Introducing statistical models for categorical data used by statistical researchers and practitioners.
Prerequisites:(a) Elementary Statistics(b).At least one of the following packages(SAS, R/Splus, or SPSS).
Contents :
1.Statistical inference for Two-way and Three-way Contigency tables under different assumptions.
2.Logit/Loglinear models and their extensions.
3.Generalized linear models with random effects for categorical responses.
4.Models checking and selection.
5.Asymptotic results and other advanced topics.
Sofewares:
1.SAS: PPRC FREQ, GENMOD, LOGISTIC, CATMOD, and NLMIXED.
2.S-PLUS or R: chisq.test, glm, fisher. test, gee, and glmmPQL.
3.SPSS: crosstabs, logistic, and plum.
課程資訊
基本資料
選修課,學分數:3-0
上課時間:二/7,8,9[M438]
修課班級:統計碩博1,2
修課年級:年級以上
選課備註:
教師與教學助理
授課教師:蘇俊隆
大班TA或教學助理:尚無資料
Office HourOffice Hours : 一/7,9,10 二/6; [新管院M434]
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
“Categorical Data Analysis” by Alan Agresti
開課紀錄
您可查詢過去本課程開課紀錄。 類別資料分析歷史開課紀錄查詢