107年第2學期-5737 機器學習 課程資訊

評分方式

評分項目 配分比例 說明
期中考 30 筆試
期末專案 30 分組專案
作業 30 回家作業
出席 10 出席

選課分析

本課程名額為 70人,已有14 人選讀,尚餘名額56人。


登入後可進行最愛課程追蹤 [按此登入]。

授課教師

陳隆彬

教育目標

機器學習是透過演算法,使用歷史資料做訓練以建立模型,並依此模型對於新的資料進行預測。本課程涵蓋機器學習的基礎理論、演算法、以及應用,探討什麼是機器學習?機器可能學習嗎?如何學習?如何做到較好的學習?讓同學了解機器學習的理論與實務。

課程概述

Machine learning is the science of data analysis that automates a massive number of models building. Its process uses data to iteratively detect patterns and adjust models accordingly, and enables computers to learn without explicitly programmed. This course introduces some important concepts and algorithms of machine learning from both theoretical and practical perspective. The topics include, but not limited to: (1) Supervised learning (Linear Models for Regression and Classification, Kernel Smoothing Methods, Decision Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Ensemble learning (Bagging, Boosting, Random Forests). (4) Others (MCMC, Optimization Integration).

課程資訊

參考書目

[1] Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin, Learning From Data, AMLbook.com, 2012.
[2] Ethem Alpaydın, Introduction to Machine Learning, 2nd Ed. The MIT Press Cambridge, 2010.
[3] An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples, by Nick McCrea.
[4] Deep Reinforcement Learning, David Silver, Google DeepMind, 2017 (http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf)
[5] Reinforcement Learning: An Introduction, by Richard S. Sutton,‎ Andrew G. Barto, A Bradford Book, 2017

開課紀錄

您可查詢過去本課程開課紀錄。 機器學習歷史開課紀錄查詢