113年第2學期-1174 商業分析之機器學習 課程資訊
評分方式
評分項目 | 配分比例 | 說明 |
---|---|---|
Attendance and class participation | 30 | Students are required to attend class |
Assignments | 30 | |
Final exam/presentation | 40 |
選課分析
本課程名額為 30人,已有0 人選讀,尚餘名額30人。
本課程可網路登記,目前已登記人數為 2 人,選上機率為99.9%
登入後可進行最愛課程追蹤 [按此登入]。
教育目標
Unlock the potential of machine learning with our "Foundations of Machine Learning with Python" course, designed for beginners eager to delve into the world of intelligent data analysis using Python and Quarto. This hands-on class introduces participants to the fundamental concepts and practical skills required to implement machine learning algorithms using Python. Whether you're a data enthusiast, analyst, or professional looking to enhance your skill set, this course provides a solid introduction to the essentials.
This class provides a solid foundation in using Scikit-Learn, the versatile machine learning library in Python. Whether you're a data enthusiast, analyst, or aspiring data scientist, this course equips you with the essential skills to implement machine learning models for classification, regression, and clustering.
課程資訊
基本資料
選修課,學分數:0-3
上課時間:三/2,3,4[M023]
修課班級:共選修1-4(管院開)
修課年級:1年級以上
選課備註:全英授課,開放全校學生修習,限30人
教師與教學助理
授課教師:金泰星
大班TA或教學助理:尚無資料
Office HourOffice hours are to be announced in class. Appointments can also be made with prior arrangements.
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
Textbooks
Paper, D. (2020). Hands-on Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python. Apress. Download from the University Library for free. https://doi.org/10.1007/978-1-4842-5373-1
References
McKinney, Wes. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. Second edition, O'Reilly Media, Inc, 2018.
Grus, Joel. Data Science from Scratch: First Principles with Python. Second edition, O'Reilly Media, 2019.
開課紀錄
您可查詢過去本課程開課紀錄。 商業分析之機器學習歷史開課紀錄查詢