101年第1學期-4529 資料分析 課程資訊
評分方式
評分項目 | 配分比例 | 說明 |
---|---|---|
mid-term | 50 | |
final | 50 |
選課分析
本課程名額為 70人,已有28 人選讀,尚餘名額42人。
登入後可進行最愛課程追蹤 [按此登入]。
授課教師
許玟斌教育目標
cultivate student ability in problem solving using data analysis techniques
課程概述
Dimensionality is an issue that can arise in every scientific field. Generally speaking, the difficulty lies on how to visualize a high dimensional function or data set. Aside from the differences that underlie the various scientific contexts, such kinds of questions do have a common root in Statistics. This is the driving force for the study of high dimensional data analysis. This course will discuss several statistical methodologies useful for exploring voluminous data. They include Principal Component Analysis, Clustering and Classification, Tree-structured analysis, Sliced inverse regression (SIR) and principal Hessian direction (PHD). SIR and PHD are two novel dimension reduction methods, useful for the extraction of geometric information underlying noisy data of several dimensions. The theory of SIR/PHD will be discussed in depth. It will be used as the backbone for the entire course. Examples from various application areas will be given. They include social/economic problems like unemployment rates, biostatistics problems like clinic trials with censoring, machine learning problems like handwritten digital recognition; quality control problems like performance measurement of digital to analogic converters; biomedical problems like functional Magnet Resonance Imaging, and bioinformatics problems like micro-array gene expression.
課程資訊
基本資料
選修課,學分數:3-0
上課時間:一/2,3,4[ST318]
修課班級:資工碩1,2
修課年級:年級以上
選課備註:
教師與教學助理
授課教師:許玟斌
大班TA或教學助理:尚無資料
Office Hourst412 mon 2-4pm
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
intelligent data analysis, Michael Berthold and David J. Hand
開課紀錄
您可查詢過去本課程開課紀錄。 資料分析歷史開課紀錄查詢