107年第1學期-5697 深度學習 課程資訊
評分方式
評分項目 | 配分比例 | 說明 |
---|---|---|
期中考 | 30 | 筆試 |
期末專案 | 30 | 分組專案 |
作業 | 30 | 回家作業 |
出席 | 10 | 出席 |
選課分析
本課程名額為 70人,已有17 人選讀,尚餘名額53人。
登入後可進行最愛課程追蹤 [按此登入]。
教育目標
1 學習深度學習基礎原理
2 如何使用深度學習來解決應用問題
3 如何使用深度學習工具
4 常用的深度學習與AI應用
課程概述
Machine learning is the science of data analysis that enables computers to learn without being explicitly programmed. From the computer science point of view, unlike computational statistics dealing with prediction-making or data mining focusing on data-exploring, machine learning uses data to iteratively detect patterns and adjust models accordingly. This introductory course provides students an overview of the field of machine learning, as well as of its fundamental concepts and algorithms from practical perspective. Usually, machine learning algorithms are categorized as being supervised or unsupervised. Some of the important topics include (1) Supervised learning (Linear and Logistic Regressions, Classification and Regression Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Others (Boosting and Random Forests).
課程資訊
基本資料
選修課,學分數:3-0
上課時間:二/2,3,4[ST436]
修課班級:資工碩1,2
修課年級:年級以上
選課備註:三大領域:人工智慧
教師與教學助理
授課教師:陳隆彬
大班TA或教學助理:尚無資料
Office Hour三/14:00~16:00
四/18:00~19:20
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
1 Deep Reinforcement Learning, David Silver, Google DeepMind, 2017 (http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf)
2 Reinforcement Learning: An Introduction, by Richard S. Sutton, Andrew G. Barto, A Bradford Book, 2017
3 Other Internet Resources
開課紀錄
您可查詢過去本課程開課紀錄。 深度學習歷史開課紀錄查詢