111年第1學期-1056 迴歸分析技術及應用 課程資訊
評分方式
評分項目 | 配分比例 | 說明 |
---|---|---|
Mid-term Examination | 40 | |
Final Examination | 40 | |
Assignments | 20 |
選課分析
本課程名額為 40人,已有31 人選讀,尚餘名額9人。
登入後可進行最愛課程追蹤 [按此登入]。
教育目標
This course highlights the importance and role of regression modeling, a very useful approach for supervised learning. In particular, the regression modeling is a useful tool for predicting a quantitative response. Regression modeling has been around for a long time and is the topic of innumerable textbooks. Though it may seem somewhat dull compared to some of the more modern statistical learning approaches, linear regression is still a useful and widely used statistical learning method. This course will concentrate more on the applications of the methods and less on the mathematical details. Many labs have been created to illustrate how to implement each of the regression learning methods using the popular statistical software package R. These labs provide the reader with valuable hands-on experience.
課程資訊
基本資料
選修課,學分數:3-0
上課時間:五/6,7,8[ST508]
修課班級:資工系3,4
修課年級:年級以上
選課備註:AI組分組選修
教師與教學助理
授課教師:江輔政
大班TA或教學助理:尚無資料
Office HourOffice Hours:
1. 星期一: 10:20~12:20 地點: ST 328 (科技大樓)
2. 星期五: 10:20~12:20 地點: ST 328 (科技大樓)
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
Textbook(教科書):E-Book (本校圖書館有此教科書之電子資源)
G. James, et al.,“An Introduction to Statistical Learning with Application in R”, 2013. ISBN 978-1-4614-7138-7 (eBook).
開課紀錄
您可查詢過去本課程開課紀錄。 迴歸分析技術及應用歷史開課紀錄查詢