111年第2學期-5570 深度與強化學習 課程資訊
評分方式
評分項目 | 配分比例 | 說明 |
---|---|---|
Participation | 10 | |
Homework | 20 | |
Midterm project | 30 | Kaggle competition |
Final project | 30 | Applications in industrial engineering |
Final report | 10 |
選課分析
本課程名額為 25人,已有35 人選讀,尚餘名額-10人。
登入後可進行最愛課程追蹤 [按此登入]。
授課教師
黃鼎翔教育目標
The course objectives are to introduce concepts and approaches of deep and reinforcement learning as well as the related applications about industrial engineering. We expect that students can further apply the approaches introduced in the course into their study and future works.
課程資訊
基本資料
選修課,學分數:0-3
上課時間:四/5,6,7[H122]
修課班級:工工碩博1,2
修課年級:1年級以上
選課備註:GE7106
教師與教學助理
授課教師:黃鼎翔
大班TA或教學助理:尚無資料
Office HourAppointment in advance by email
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into deep learning. arXiv preprint arXiv:2106.11342.
Krohn, J., Beyleveld, G., & Bassens, A. (2019). Deep learning illustrated: a visual, interactive guide to artificial intelligence. Addison-Wesley Professional.
Zai, A., & Brown, B. (2020). Deep reinforcement learning in action. Manning Publications.
開課紀錄
您可查詢過去本課程開課紀錄。 深度與強化學習歷史開課紀錄查詢