112年第2學期-6188 類別資料分析 課程資訊

評分方式

評分項目 配分比例 說明
Attendance 10
Homework and paper readings 30
Midterm Exam 30
Final presentation on paper review and computation 30

選課分析

本課程名額為 70人,已有5 人選讀,尚餘名額65人。


登入後可進行最愛課程追蹤 [按此登入]。

授課教師

黃愉閔

教育目標

承課程概述 課程主要依照課程概述主題涵蓋: (1) likelihood-based inferences on measures of association for two-dimensional and three-dimensional contingency tables under different assumptions. (2) generalized linear (mixed) models with emphasis on binary (Poisson) regression and logit models. (3) Repeated categorical data modeling, such as generalized estimating equation approaches and quasi-likelihood methods. (4) Asymptotic results and other advanced topics. 但此課程比較偏重對於類別變數資料(單變量及多變量)廣泛使用的各個模型進行介紹及使用。 除了實際使用R進行類別資料分析,也將探討一些近期的類別資料相關研究。

課程概述

Categorical data analysis that deals with qualitative or discrete quantitative data is one of the most important statistical tools nowadays. In recent years, this tool plays a fundamental role on analyzing polychotomous data, particularly in the social and health sciences. This course introduces statistical theories and models for analyzing categorical data. The main topics cover : (1) likelihood-based inferences on measures of association for two-dimensional and three-dimensional contingency tables under different assumptions. (2) generalized linear (mixed) models with emphasis on binary (Poisson) regression and logit models. (3) Repeated categorical data modeling, such as generalized estimating equation approaches and quasi-likelihood methods. (4) Asymptotic results and other advanced topics.

課程資訊

參考書目


1. Categorical Data Analysis 3rd 版本
作者 Alan Agresti (Author)

2. Related references and papers

開課紀錄

您可查詢過去本課程開課紀錄。 類別資料分析歷史開課紀錄查詢