113年第1學期-1590 類別資料分析 課程資訊

評分方式

評分項目 配分比例 說明
Quizzes, Homework, and/or Presentations 30
Midterm 30
Final 40

選課分析

本課程名額為 40人,已有40 人選讀,尚餘名額0人。


登入後可進行最愛課程追蹤 [按此登入]。

授課教師

蘇俊隆

教育目標

Introducing statistical models for categorical data used by statistical practitioners. 1. Introduction: Distributions and Inference for Categorical Data 2. Describing Contingency Tables 3. Inference for Contingency Tables 4. Introduction to Generalized Linear Models 5. Logistic Regression 6. Building,Checking, and Applying Logistic Regression Models 7. Loglinear Models for Contingency Tables In this semester, we may include some topics related to Data Mining such as Decision Trees, Bagging, Random Forests, and/or Boosting.

課程概述

Objective: Introducing statistical models for categorical data used by statistical researchers and practitioners. Prerequisites:(a) Elementary Statistics(b).At least one of the following packages(SAS, R/Splus, or SPSS). Contents : 1.Statistical inference for Two-way and Three-way Contigency tables under different assumptions. 2.Logit/Loglinear models and their extensions. 3.Generalized linear models with random effects for categorical responses. 4.Models checking and selection. 5.Asymptotic results and other advanced topics. Sofewares: 1.SAS: PPRC FREQ, GENMOD, LOGISTIC, CATMOD, and NLMIXED. 2.S-PLUS or R: chisq.test, glm, fisher. test, gee, and glmmPQL. 3.SPSS: crosstabs, logistic, and plum.

課程資訊

參考書目

“Categorical Data Analysis” 3rd by Alan Agresti

開課紀錄

您可查詢過去本課程開課紀錄。 類別資料分析歷史開課紀錄查詢