113年第1學期-1597 機器學習 課程資訊
評分方式
評分項目 | 配分比例 | 說明 |
---|---|---|
作業 | 30 | |
期中考試 | 30 | |
期末分組報告 | 30 | |
出席狀況與平時表現 | 10 |
選課分析
本課程名額為 40人,已有43 人選讀,尚餘名額-3人。
本課程可網路登記,目前已登記人數為 10 人,選上機率為-30%
登入後可進行最愛課程追蹤 [按此登入]。
授課教師
蔡承翰教育目標
這門課程主要介紹「機器學習」所需處理的各類問題,以及所使用的分析方法和模型。課程將以簡單的概念與理論講解各類方法與模型,並以 Python 進行演示。課程結束後,學生們將能夠運用「機器學習」的方法進行分析與建模。
課程概述
Machine learning is the science of data analysis that enables computers to learn without being explicitly programmed. From the computer science point of view, unlike computational statistics dealing with prediction-making or data mining focusing on data-exploring, machine learning uses data to iteratively detect patterns and adjust models accordingly. This introductory course provides students an overview of the field of machine learning, as well as of its fundamental concepts and algorithms from practical perspective. Usually, machine learning algorithms are categorized as being supervised or unsupervised. Some of the important topics include (1) Supervised learning (Linear and Logistic Regressions, Classification and Regression Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Others (Boosting and Random Forests).
課程資訊
基本資料
選修課,學分數:3-0
上課時間:四/2,3,4[M442]
修課班級:統計系2-4
修課年級:2年級以上
選課備註:大數據資料群組(109-113適用)
教師與教學助理
授課教師:蔡承翰
大班TA或教學助理:尚無資料
Office Hour三/3,4[M448]
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
1. James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in python. Springer Nature.
2. Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
開課紀錄
您可查詢過去本課程開課紀錄。 機器學習歷史開課紀錄查詢