114年第2學期-5569 智慧計算 課程資訊

評分方式

評分項目 配分比例 說明
出席 10
平時作業 15
期中報告 35
期末專題實作與報告 40

選課分析

本課程名額為 70人,已有0 人選讀,尚餘名額70人。
本課程可網路登記,目前已登記人數為 2 人,選上機率為99.9%




登入後可進行最愛課程追蹤 [按此登入]。

授課教師

黃鼎翔

教育目標

This course integrates meta-heuristics and reinforcement learning to provide comprehensive training in intelligent decision-making systems. The first part focuses on meta-heuristic algorithms for combinatorial optimization, including genetic algorithms, simulated annealing, tabu search, and swarm intelligence. The second part introduces reinforcement learning fundamentals, covering Markov decision processes, Q-learning, policy gradient methods, and deep reinforcement learning. Emphasis is placed on both theoretical understanding and practical implementation. Students will develop algorithms to solve real-world problems in their research domains, learning to select appropriate methods, tune parameters, and evaluate performance effectively.

課程資訊

參考書目

Walpole, R.E., Myers, R.H., Myers, S. L. and Ye, Keying (2016). Probability and
Statistics For Engineers and Scientists. (Global 9th edition). Pearson Education.

Ross, S. M. (2018). Introduction to Probability and Statistics (5th edition).
Elsevier Academic Press.

開課紀錄

您可查詢過去本課程開課紀錄。 智慧計算歷史開課紀錄查詢