114年第2學期-5569 智慧計算 課程資訊
評分方式
| 評分項目 | 配分比例 | 說明 |
|---|---|---|
| 出席 | 10 | |
| 平時作業 | 15 | |
| 期中報告 | 35 | |
| 期末專題實作與報告 | 40 |
選課分析
本課程名額為 70人,已有0 人選讀,尚餘名額70人。
本課程可網路登記,目前已登記人數為 2 人,選上機率為99.9%
登入後可進行最愛課程追蹤 [按此登入]。
授課教師
黃鼎翔教育目標
This course integrates meta-heuristics and reinforcement learning to provide comprehensive training in intelligent decision-making systems. The first part focuses on meta-heuristic algorithms for combinatorial optimization, including genetic algorithms, simulated annealing, tabu search, and swarm intelligence. The second part introduces reinforcement learning fundamentals, covering Markov decision processes, Q-learning, policy gradient methods, and deep reinforcement learning. Emphasis is placed on both theoretical understanding and practical implementation. Students will develop algorithms to solve real-world problems in their research domains, learning to select appropriate methods, tune parameters, and evaluate performance effectively.
課程資訊
基本資料
選修課,學分數:0-3
上課時間:五/2,3,4[E230]
修課班級:工工碩博1,2
修課年級:1年級以上
選課備註:IP7103
教師與教學助理
授課教師:黃鼎翔
大班TA或教學助理:尚無資料
Office Hour請事先約定時間
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
Walpole, R.E., Myers, R.H., Myers, S. L. and Ye, Keying (2016). Probability and
Statistics For Engineers and Scientists. (Global 9th edition). Pearson Education.
Ross, S. M. (2018). Introduction to Probability and Statistics (5th edition).
Elsevier Academic Press.
開課紀錄
您可查詢過去本課程開課紀錄。 智慧計算歷史開課紀錄查詢
