98年第2學期-4436 人工智慧方法論(二) 課程資訊
評分方式
評分項目 | 配分比例 | 說明 |
---|---|---|
Homework | 20 | |
Participation in the classes | 20 | |
Midterm report | 30 | |
Final report | 30 |
選課分析
本課程名額為 70人,已有17 人選讀,尚餘名額53人。
登入後可進行最愛課程追蹤 [按此登入]。
授課教師
王偉華教育目標
Learning is an alternative in pursuing the goal. In this semester, two major topics will be covered: Statistical Learning Theory (SLT) and Graphical models, sometimes noted as Bayesian Network (BN).
課程概述
This course is designed for the Ph.D. or aggressive Master students. The purpose of this course is to help the students mastering the theoretical concepts and skills in analyzing the learning processes and the related methodologies. The ways to expolore the relationships among data are heavily investigated and discussed in these years. Learning is an alternative in pursuing the goal. In this semester, two major topics will be covered: Statistical Learning Theory (SLT) and Graphical models, sometimes noted as Bayesian Network (BN).
課程資訊
基本資料
選修課,學分數:0-3
上課時間:三/6,7,8[E232]
修課班級:工工碩博
修課年級:年級以上
選課備註:B737
教師與教學助理
授課教師:王偉華
大班TA或教學助理:尚無資料
Office Hour待定
授課大綱
授課大綱:開啟授課大綱(授課計畫表)
(開在新視窗)
參考書目
Vapnik, V., “The Nature of Statistical Learning Theory”, Springer, 1999
開課紀錄
您可查詢過去本課程開課紀錄。 人工智慧方法論(二)歷史開課紀錄查詢