114年第2學期-6190 隨機過程 課程資訊

評分方式

評分項目 配分比例 說明
Assignments+Homeworks 30
Mid-term Exam 20
Project 1 25
Project 2 25

選課分析

本課程名額為 70人,已有0 人選讀,尚餘名額70人。
本課程可網路登記,目前已登記人數為 1 人,選上機率為99.9%




登入後可進行最愛課程追蹤 [按此登入]。

授課教師

王榮琮

教育目標

The objective of this course is to introduce basic concepts for stochastic processes. The main focus will be on studying analytical models for systems which change states stochastically with time. The topics include: 1. Markov Chains 1A. Hidden Markov Models and Related Topics 2. Poisson processes 2A. Non-homogeneous Poisson processes and Related Topics 3. Continuous-Time Markov Chain 3A. Queueing Models 4. Brownian motion and Martingales 4A. Black-Scholes Models and Related Topics 5. Linear State Space Model 5A Filtering

課程概述

This is an introductory course of stochastic processes. In this course, different types of modeling and analysis of practical phenomena in terms of stochastic processes will be introduced. The content of this course include basic stochastic processes, stochastic models, and diffusion processes. The course covers the following topics:Markov models (including Poisson processes, discrete-time and continuous-time Markov chains), renewal processes, and Brownian motion etc.

課程資訊

參考書目

1. Sheldon M. Ross (2014) Introduction to Probability Models, 11th ed, Academic Press
2. Sheldon M. Ross (1996) Stochastic Processes, 2nd ed, John Wiley.
3. Chung K.L. and Williams R.J. (1990) Introduction to Stochastic Integration (2/E), Birkhäuser.

開課紀錄

您可查詢過去本課程開課紀錄。 隨機過程歷史開課紀錄查詢